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Abstract. A study of zero-dimensional theories, based on exact results, is presented. First, relying on
a simple diagrammatic representation of the theory, equations involving the generating function of all
connected Green’s functions are constructed. Second, exact solutions of these equations are obtained for
several theories. Finally, renormalization is carried out. Based on the anticipated knowledge of the exact
solutions the full dependence on the renormalized coupling constant is studied.

1 Introduction

In this paper we study several aspects of zero-dimensional
quantum field theory. Such theories may serve as a model
(the static ultra-local limit) of more realistic quantum field
theories, and as a useful didactic object in their own right,
since zero-dimensional theories, for which the path inte-
gral is actually a simple integral, allow for many explicit
and exact solutions that cannot be obtained in higher
dimensions. As recent examples, we may quote ’t Hooft
[1] and Bender et al. [2]. Questions of particular interest
here are the behavior of theories in high orders of per-
turbation theory (either many loops, or large number of
external legs), and of the relation between the diagram-
matic perturbation expansion and the full solution. The
layout of this paper is as follows. We start by a diagram-
matic (re)derivation of equations that govern the set of all
connected Green’s functions of the theory. We show how
for a general scalar theory with arbitrary interactions the
Green’s functions may be obtained order by order. We
point out how the Schwinger-Dyson equation, although
derivable from purely diagrammatic arguments, in fact de-
scribes a much larger class of solutions. Next, we discuss
the representation of these solutions as path integrals over
contours in the complex ϕ-plane. Exact solutions for the-
ories with interactions up to ϕ4 are obtained including ex-
plicitly perturbative and non-perturbative contributions.
We show how a classification of the allowed contours in the
complex ϕ-plane can immediately determine properties of
the non-perturbative character of these theories. Renor-
malization, which for these theories is equivalent to im-
posing restrictions to diagrams, is also studied. The wave
function renormalizations are fully determined and their
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dependence on the renormalized coupling constant of the
theory is presented and discussed.

2 Basic equations

In this section we derive equations for an arbitrary zero-
dimensional field theory. The derivation is based entirely
upon the diagrammatic representation of the theory. A
theory is diagrammatically defined by a sequence of ver-
tices that are weighted by the ‘coupling’ constants taken
for convenience as −λk, for the k-th vertex. In fact, the
two-point coupling λ2 = m2 ≡ µ can be eliminated by the
introduction of the propagator which means that every
line of a diagram accounts for a factor 1/µ. Moreover a
loop in a graph is counted by an additional parameter, �.
A solution of a zero-dimensional theory is determined by a
sequence of objects Cn, n = 0, 1, 2, . . . that represent the
connected, n-point Green’s functions, i.e. the sum of all
connected diagrams with n external lines. One can define
the generating function of the Green’s functions as

φ(x) =
∞∑

n=0

xn

n!
Cn+1 . (1)

We want to write down an equation for φ, and in order to
do so, we represent it with a diagram:
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Derivatives of φ with respect to x are represented by extra
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and so on.
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2.1 The Schwinger-Dyson equation

Let us consider a theory with a k-th vertex. In order to
write an equation for φ we start with the bare vertex and
we attach k − 1 blobs

�
0 φk−1

(k − 1)! .

The factor 1/(k − 1)! is due to the k − 1 identical blobs.
Considering a one loop attachment we similarly have

�
1 φ′

2!
φk−3

(k − 3)! .

The factor 1/(k − 2)! is again due to the k − 2 identical
blobs, whereas the 1/2! is due to the symmetry factor
of blob with two lines. Following this reasoning we can
proceed with higher powers of �. For instance at the two-
loop level we get two terms

�
2 φ

′2

2!2!2!
φk−5

(k − 5)!

�
2 φ′′

3!
φk−4

(k − 4)! .

Finally the last term, i.e the term with the largest number
of loop attachments, will simply read

�
k−2 φ(k−2)

(k − 1)! .

The result looks like

= ����������+ + + + +. . .+ .

The equation reads

x = µφ+ λk

(
φk−1

(k − 1)! + �
1 φ′

2!
φk−3

(k − 3)! + �
2 φ

′2

2!2!2!
φk−5

(k − 5)!

+�
2 φ′′

3!
φk−4

(k − 4)! + . . .+ �
k−2 φ(k−2)

(k − 1)!
)

. (2)

For an arbitrary theory a sum over k should be under-
stood. It represents a non-linear differential equation for
φ, the Schwinger-Dyson (SD) equation, which has been
derived by the direct application of the Feynman rules.

In order to be more specific let us consider a theory
with only a 3-point and a 4-point vertex. Following the
abovementioned reasoning a diagrammatic equation for φ
looks like
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This reads

φ(x) =
x

µ
− λ3

2µ
[
φ(x)2 + �φ′(x)

]

−λ4

6µ
[
φ(x)3 + 3�φ(x)φ′(x) + �

2φ′′(x)
]

. (3)

This equation generates equations for the Green’s func-
tions if the power series of φ(x) is inserted. The first three
are

C1 = − 1
6µ

C2
1 (λ4C1 + 3λ3)− �

2µ
C2(λ4C1 + λ3)

− �
2

6µ
λ4C3 ,

C2 = − 1
2µ
(2λ3C1C2 − 2 + λ4C

2
1C2)

− �

2µ
(λ3C3 + λ4C1C3 + λ4C

2
2 )−

�
2

6µ
λ4C4 ,

C3 = − 1
2µ
(2λ3C1C3 + 2λ3C

2
2 + λ4C3C

2
1 + 2λ4C

2
2C1)

− �

2µ
(3λ4C2C3 + λ3C4 + λ4C1C4)− �

2

6µ
λ4C5 . (4)

The SD equation is invariant under certain redefinition
of the parameters involved. It is not difficult to prove that
if φ(µ, λk, �;x) is a solution, also cβφ(cα−2βµ, cα−kβλk,
cα

�; cα−βx) is a solution for any c, α, β. This scaling prop-
erty is also a concequence of the fact that φ(µ, λk, �;x)/√

�/µ is a dimensionless function of the scaled variables
y = x/

√
�µ and gk = λk�

k/2−1/µk/2. The scaling property
can be expressed with the following equations, derived, for
instance, by differentiating with respect to c and taking
c = 1: (

x
∂

∂x
+ µ

∂

∂µ
+ �

∂

∂�
+ λk

∂

∂λk

)
φ = 0 ,(

1 + x
∂

∂x
+ 2µ

∂

∂µ
+ kλk

∂

∂λk

)
φ = 0 . (5)

These equations are equivalent to the usual topological
relations that relate the number of external lines E, the
number of internal lines I, the number of k-vertices Vk,
and the number of loops L, appearing in any diagram,

kVk = E + 2I Vk = I + 1− L .

A sum over k should be understood in the general case.

2.2 Stepping equations

In the diagrammatic construction, one assumes that every
Green’s function can be written as a sum of diagrams, con-
sisting of vertices connected by lines (propagators). The
power of 1/µ in a diagram is equal to the number of prop-
agators, and hence the operation −∂/∂µ on this diagram
corresponds to cutting a single propagator in all possible
places in that diagram. There are two possibilities for the
result: the chosen propagator may be either a part of a
loop, in which case the diagram remains connected when
we cut this line, or part of the ‘tree skeleton’, such that
cutting it makes the diagram diconnected:
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In the first case the cut diagram remains connected but
gains two external lines at the price of one loop (i.e. on
power of �); in the second place, the cut diagram falls
apart into two connected diagrams:
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Putting in the correct symmetry factors, we can express
this procedure by

S2:
∂

∂µ
φ(x) + φ(x)φ′(x) +

�

2
φ′′(x) = 0 , (6)

where the second term comes from diagrams that fall apart
under cutting, and the third one from loops that are cut
open. We call (6) the Step-2 equation (S2) since it de-
scribes a procedure in which the number of external legs
is increased in steps of 2.

Like SD (3), the Stepping equation S2 implies relations
between various C’s. The lowest few of these read

C3 = −2
�

(
C1C2 +

∂

∂µ
C1

)
,

C4 = −2
�

(
C1C3 + C2

2 +
∂

∂µ
C2

)
,

C5 = −2
�

(
C1C4 + 3C2C3 +

∂

∂µ
C3

)
,

C6 = −2
�

(
C1C5 + 4C2C4 + C2

3 +
∂

∂µ
C4

)
, (7)

and so on. Note that S2 is completely independent of the
interaction potential, and therefore perforce contains in-
formation independent of that contained in the SD. It
follows that there must be solutions to SD that do not
obey S2 and that these solutions cannot be represented by
Feynman diagrams.

It is possible to combine SD and S2 in the following
manner. Taking the first equation in (3), we express C3 in
C2 and C1, and solve for C2:

C2 =
2λ4

∂C1

∂µ
− 1

�

(
6µC1 + 3λ3C

2
1 + λ4C

3
1
)

3λ3 + λ4C1
.

Inserting this into the second equation of (3), we find a
differential equation for C1 alone:

0 = 4�2λ3
4

(
∂C1

∂µ

)2

− 2�2λ2
4
∂2C1

∂µ2 (λ4C1 + 3λ3)− �
∂C1

∂µ

× [9λ2
3(3λ3 + λ4C1) + 6µλ2

4C1 − 36µλ3λ4
]− 9µλ3C

2
1

× (3λ3 + λ4C1) + 3�λ2
4C

2
1 − 54µ2λ3C1 − 27�λ2

3 . (8)

By inserting the series expansion

C1 =
∑
k≥1

αk�
k ,

we can then successively determine the coefficients:

α1 = − 1
2µ2 λ3 ,

α2 = − 1
24µ5 (15λ

3
3 − 16µλ3λ4) ,

α3 = − 1
48µ8 (90λ

5
3 − 185µλ3

3λ4 + 66µ2λ3λ
2
4) ,

α4 = − 1
1152µ11 (9945λ

7
3 − 30270µλ5

3λ4

+ 24280µ2λ3
3λ

2
4 − 4352µ3λ3λ

3
4) ,

and so on.
Whereas S2 is independent of the interaction potential,

we can also derive stepping equations by deleting vertices
rather than cutting lines. For example, let us depict all
possible ways in which a selected ϕ3 vertex (denoted by a
dot) can occur in a connected graph:
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Deleting this vertex gives us
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or, in terms of φ(x), the following Step-3 equation (S3):

S3:
∂

∂λ3
φ+

1
6

�
2φ′′′ +

1
2

�
[
φφ′′ + (φ′)2

]
+
1
2
φ2φ′ = 0 .

(9)

A similar treatment holds for ϕ4 vertices: the possible
ways in which such a vertex can occur is given by
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and the result of deleting is given by
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The corresponding Step-4 equation (S4) is

S4:
∂

∂λ4
φ+

1
24

�
3φ′′′′ +

1
12

�
2 [2φφ′′′ + 5φ′φ′′]

+
1
4

�
[
φ2φ′′ + 2φ(φ′)2

]
+
1
6
φ3φ′ = 0 . (10)

2.3 The charged scalar field

Up to now we dealt with diagrammatic construction of
zero-dimensional field theories involving only one field. As
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an illustrative extension, we consider a theory with two
fields, i.e. a complex, or charged, scalar field. The Green’s
functions are labeled with two integers, and the generating
function has two expansion parameters x and x̄. Let us
introduce the notation

∂ :=
∂

∂x
, ∂̄ :=

∂

∂x̄
,

then

φ(x, x̄) =
∞∑

n,m=0

xn

n!
x̄m

m!
Cn,m+1 .

To write down the SD equation, we introduce two kind of
lines, distinguishable by an arrow. The generating function
is represented by

φ(x, x̄) = , φ̄(x, x̄) = .

An incoming external line represents a ∂̄, and an outgoing
line represents a ∂. Notice that

�∂̄φ = �∂φ̄ = .

We also introduce a four point vertex with two incoming
and two outgoing lines, so that the SD equation we want
φ to satisfy is given by

= x + + + + ,

or

φ =
x

µ
− λ

2µ
φ2φ̄− λ�

µ
φ∂φ− λ�

2µ
φ̄∂̄φ− λ�

2

2µ
∂∂̄φ . (11)

Notice that incoming and outgoing lines are not equiva-
lent, which is represented by the symmetry factors.

Also for the charged scalar field, we can write down
stepping equations. For the first one, we use that in the
diagrammatic interpretation

= + + ,

leading to

∂

∂µ
φ = −�∂∂̄φ− φ∂φ− φ̄∂̄φ . (12)

The diagrammatic derivation of the stepping equation in-
volving the derivative with respect to λ, although equally
straightforward, is rather cumbersome, leading to many
terms which we refrain from listing here.

3 Solutions to the equations

3.1 The integral representation

The SD equation is highly non-linear. Let us consider the
general term connected with the coupling λk in (2):

Qk =
φk−1

(k − 1)! + �
1 φ′

2!
φk−3

(k − 3)! + �
2 φ

′2

2!2!2!
φk−5

(k − 5)!

+�
2 φ′′

3!
φk−4

(k − 4)! + . . .+ �
k−2 φ(k−2)

(k − 1)! .

It can obviously be organized such that it can be written
as

Qk=
k−1∑
m=1

∑
{ak−1;m}

�
k−m−1

(1!)a1a1!(2!)a2a2! · · · ((k − 1)!)ak−1ak−1!

×(φ)a1(φ′)a2 . . . (φ(k−2))ak−1 , (13)

where
∑

{ak−1;m} stands for the summation with a1, a2,

. . . , ak−1 running over all positive integers under the re-
strictions that

a1 + 2a2 + 3a3 + . . .+ (k − 1)ak−1 = k − 1
and

a1 + a2 + . . .+ ak−1 = m .

This sum can be interpreted following the time-honored
formula of Faà di Bruno [3]:

dn

dxn
f( g(x) ) =

n∑
m=0

f (m)( g(x) )
∑

{an;m}
(n; a1, . . . , an)

×{g′(x)}a1{g′′(x)}a2 · · · {g(n)(x)}an

where

(n; a1, . . . , an) =
n!

(1!)a1a1!(2!)a2a2! · · · (n!)anan!
.

The identifications g′(x) = φ(x) and f (m)( g(x) ) = �
−m

f( g(x) ) with the solution

g(x) =
∫

dxφ(x) ,

f( g(x) ) = R(x) = exp
(
1
�

∫
dxφ(x)

)
, (14)

lead to an equation for R, which, including all possible
vertices, reads

∞∑
k=3

λk

(k − 1)! �
k−1R(k−1) + µ�R′(x)− (x− λ1)R(x) = 0 .

(15)

This is a linear equation, and a solution can be represented
by an integral

RΓ (x) =
∫

Γ

dϕ exp
{
1
�
[xϕ− S(ϕ)]

}
, (16)

where

S(ϕ) = λ1ϕ+
1
2
µϕ2 +

∞∑
k=3

λk

k!
ϕk ,
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and where Γ is a contour in the complex ϕ-plane, such
that the difference between the values of the integrand in
the end-points is zero. This is the well known path integral
representation, with the action S.

A remark is in order. Although the SD equations re-
sulted from a a purely diagrammatic construction, their
solutions, expressed through the path integral representa-
tion, include non-perturbative ones that cannot be real-
ized in a weak coupling expansion, as we will see below.

Secondly, we note that (15) can be used to write the
original SD equation for φ compactly as

x = λ1 + µφ+
∑
k≥3

λk

(k − 1)!
(

�
∂

∂x
+ φ

)k−2

φ . (17)

For a general interacting theory, differentiating RΓ with
respect to λk in (16), the stepping equation in terms of φ
can be rewritten as

∂φ

∂λk
= − 1

k!
∂

∂x

(
φ+ �

∂

∂x

)k−1

φ (18)

and in case only a k-vertex and the tadpole λ1 is present,
combining with the SD a simpler form is obtained

∂φ

∂λk
= − 1

kλk

(
(x− λ1)φ′ + φ− 2µφφ′ − �µφ′′) . (19)

Moreover for a charged scalar field the stepping equation
in terms of φ can be written in a compact form

∂φ

∂λ
= −1

4
∂̄(φ̄+ �∂)2(φ+ �∂̄)φ . (20)

Finally, the linear SD equation for ϕ3 + ϕ4-theory be-
comes simply

1
6
λ4�

3R′′′(x) +
1
2
λ3�

2R′′(x) + µ�R′(x)− xR(x) = 0 ,

(21)

and we see that R(x) admits 3 linearly independent solu-
tions (2 if λ4 = 0). Hence φ(x) has a 2-parameter family
of solutions (a 1-parameter family if λ4 = 0). In the se-
quel we will show how to get exact explicit solutions for a
number of scalar theories.

3.2 Results for pure ϕ3-theory

In this section we derive results for the pure ϕ3-theory,
with action

S(ϕ) =
1
2
µϕ2 +

1
6
λϕ3 . (22)

This theory is interesting because as we will see the solu-
tion for the generating function can be expressed directly
in terms of known special functions. Defining

y =
x√
�µ

, ξ =
λ
√

�

6µ3/2

the SD equation becomes

3ξR′′(y) +R′(y)− yR(y) = 0 (23)

which admits the following general solution

R(y) = e−y/6ξ [c1Ai(t) + c2Bi(t)] (24)

where

t = (3ξ)−1/3
(
1
12ξ

+ y

)
.

Ai and Bi are the Airy functions (cf. [3]). The solution for
the generating function of connected Green’s functions is
given by

φ(x) =

√
�

µ

(
− 1
6ξ
+ 21/2t

1/4
0
Ai′(t) +KBi′(t)
Ai(t) +KBi(t)

)
(25)

with t0 = t(y = 0). The constant K is not determined by
the SD equation: in fact it could have been even a function
of ξ.

For solutions that admit a diagrammatic representa-
tion extra information can be obtained by combining SD
and stepping equations. For instance, the scaling and step-
ping equations of the previous section result to a K that
is independent of ξ. Moreover by combining SD and S2 an
equation involving only C1:

2µ2C1 + λµC2
1 + �λ2 ∂

∂µ
C1 + �λ = 0 , (26)

can be obtained. The series of substitutions

v =
�λ2

µ3 , C1 = − λ�

2µ2 f(v) , w =
1
3v

,

f(v) = −2k
′(w)

vk(w)
, k(w) = w1/3e−wψ(w) ,

leads to the Bessel equation

w2ψ′′(w) + wψ′(w)−
(

w2 +
1
9

)
ψ(w) = 0 .

The special solution choice ψ(w) = K1/3(w) gives the fol-
lowing tadpole and its asymptotic expansion:

f(v) =
2
v

(
K2/3(w)
K1/3(w)

+ 1
)

,

C1 ∼ −2µ
λ
− �λ2

2µ2

(
1− 5

4
v +

15
4

v2 − 1105
64

v3

+
1695
16

v4 + · · ·
)

. (27)

This tadpole, therefore, has a non-perturbative contribu-
tion. The more generic choice ψ = k1I1/3(w)+k2I−1/3(w),
with k1 	= −k2, gives

f(v) = −2
v

(
k1I−2/3(w) + k2I2/3(w)
k1I1/3(w) + k2I−1/3(w)

− 1
)

,
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C1 ∼ −�λ2

2µ2

(
1 +

5
4
v +

15
4

v2 +
1105
64

v3

+
1695
16

v4 + · · ·
)

, (28)

which is the standard perturbative result [4]. The coef-
ficients k1 and k2 drop out for the perturbative expan-
sion: they simply account for non-perturbative contribu-
tions that are not computable perturbatively!

A remark is in order here: although all the terms in
the perturbative series for C1 have strictly the same com-
plex phase and according to the traditional wisdom the
series is not Borel summable, the exact result is well de-
fined, indicating that a suitable generalization of the Borel
transform will produce the right answer [5].

Another interesting aspect is the large n behavior of
the Green’s functions, where n refers to the number of ex-
ternal legs, a problem that is traditionally seen as relevant
to the unitarity of the S matrix [6]. This can be traced
from the analytical structure of the solution for the gener-
ating functions in the complex x-plane. As is evident from
the fact that the solution, (24), for the generating function
of all connected and disconnected graphs is an entire func-
tion, the corresponding Green’s function Zn grows slower
than n!; in fact it grows like (n!)2/3. On the other hand
the Cn, the connected graphs, exhibit a factorial growth,
since their generating function φ(x) posesses poles at finite
complex values of x.

3.3 Results for pure ϕ4-theory

In this section we derive the lowest Green’s functions for
the pure ϕ4 theory, with action

S(ϕ) =
1
2
µϕ2 +

1
24

λϕ4 . (29)

Defining

y =
x√
�µ

, ξ =
λ
√

�

24µ2

we get for the SD equation

4ξR′′′(y) +R′(y)− yR(y) = 0 . (30)

There are three solutions, which can be represented as
follows:

R1(y) =
∞∑

n=0

y2n

n!
(32ξ)−n/2U(n; (8ξ)−1/2)

R2(y) =
∞∑

n=0

(−1)n y2n

n!
(32ξ)−n/2 V(n; (8ξ)−1/2)

Γ (n+ 1
2 )

R3(y) =
∞∑

n=0

y2n+1

(2n+ 1)!
(4ξ)−n/2

inHn(i(16ξ)−1/2) , (31)

where U(ν;x) and V(ν;x) are the parabolic cylinder func-
tions, and Hn is the nth Hermite polynomial (cf. [3]). The

general solution is a linear combination with arbitrary co-
efficients. As we can immediately see contrary to what is
argued in many standard textbooks the odd Green’s func-
tions do not necessarily vanish.

On the other hand on can study the S2 equation as
well. For this we have to distinguish two possible cases:
the ‘standard’ one, with C1 and the higher odd Green’s
functions vanishing, and the case where C1 	= 0.

Let us consider the first case with a zero tadpole. In
this case we cannot, of course, directly use the results de-
rived above, since these deal with C1. The S2 becomes
somewhat simpler, and in particular

C4 = −2
�

(
C2

2 +
∂

∂µ
C2

)
.

On dimensional grounds we see that we can write

C2 =
1
µ

β(v) , v =
λ�

µ2 ,

where v is dimensionless. Inserting all this into the first
nonzero term (that with x1) in SD, we find the following
equation for β:

4v2β′(v) + vβ(v)2 + (2v + 6)β(v)− 6 = 0 .

The substitutions

β(v) = 4v
g′(v)
g(v)

, g(v) = v−1/4ewψ(w) , w =
3
4v

,

(32)

lead then to

w2ψ′′(w) + wψ′(w)−
(

w2 +
1
16

)
ψ(w) = 0 , (33)

which has the modified Bessel functions for its solutions.
The general solution can always be written as

ψ(w) = k1I1/4(w) + k2I−1/4(w) .

It is instructive to consider the perturbative form of these
results, that is, the limit where � becomes infinitesimally
small, or w goes to infinity. Since I1/4 and I−1/4 have
the same asymptotic expansion, a generic choice of k1,2
will lead to a single perturbative expansion. The single
exception is the choice k1 = −k2 which leads to ψ(w) ∝
K1/4(w), with asymptotic expansion

β(v) =
3
v

(
K3/4(w)
K1/4(w)

− 1
)

∼ 1− 1
2
v +

2
3
v2 − 11

8
v3 +

34
9

v4 + · · · .

This is the standard perturbative expansion, in which the
propagator starts with 1

µ , and has loop corrections in pow-
ers of �:

C2 = C
(1)
2 =

1
µ

(
1− λ�

2µ2 +
2λ2

�
2

3µ4 + · · ·
)

. (34)
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The alternating signs are of course due to the fact that
the Feynman rules prescribe a factor −λ for each vertex
in our Euclidean model. The asymptotic expansion in all
other cases is equal to that for the choice k2 = 0, for which
we find

β(v) = −3
v

(
I−3/4(w)
I1/4(w)

+ 1
)

∼ −6
v
+ 1 +

1
2
v +

2
3
v2 +

11
8

v3 +
34
9

v4 + · · · ,

which gives a nonstandard expansion:

C2 = C
(2)
2 = −6µ

λ�
+
1
µ

(
1 +

λ�

2µ2 +
2λ2

�
2

3µ4 + · · ·
)

. (35)

Note the occurrence of a ‘non-perturbative’ term 1/λ here:
the rest of the expansion has an apparent opposite sign of
the coupling constant. An other way to look at this solu-
tion is by examining the saddle point equation, δS/δφ = x:
the abovementioned solution corresponds to the saddle
point φc =

√−6µ/λ+O(x).
In the case C1 	= 0 we can write, again on dimensional

grounds,

C1 = α(v)
√

µ

λ
, C2 =

1
µ

β(v) ,

with v as before. The first term (with x0) in SD now gives
us a relation between α and β:

β(v) =
1

vα(v)
(
(6− v)α(v) + 4v2α′(v)

)
,

and then the second term (x1) gives

16v2α(v)α′′(v)− 32v2α′(v)2

+(32v − 24)α(v)α′(v)− 3α(v)2 = 0 .

Using w as before, we may now substitute

α(v) =
ew
√

v

ψ(w)
,

to find that ψ(w) again obeys the Bessel equation, (33).
For the asymptotic expansions, again two distinct choices
are possible. First, the choice

ψ(w) =
1
p
K1/4(w)

gives

α(v) =
pew
√

v

K1/4(w)
,

β(v) =
3
v

(
K3/4(w)
K1/4(w)

− 1
)
− p2e2w

K1/4(w)2
,

and the following asymptotic forms for C1,2:

C1 ∼ p

√
3µ
2πλ

e2w , C2 ∼ C
(1)
2 +

2p2we2w

µπ
. (36)

The alternative choice, for which we may take

ψ(w) =
1
p
I1/4(w) ,

leads to

α(v) =
pew
√

v

I1/4(w)
,

β(v) = −3
v

(
I−3/4(w)
I1/4(w)

+ 1
)
− p2e2w

I1/4(w)2
,

and

C1 ∼ p

√
3πµ

2λ
,

C2 ∼ C
(2)
2 − 2πp2v

µ

(
1− 1

4
v − 13

96
v2 − 73

384
v3 − · · ·

)
.(37)

In contrast to the zero-tadpole case, there remains an ar-
bitrary parameter in these solutions, p: it reflects the pres-
ence of the ‘non-perturbative’ tadpole-like contribution
and has to be determined by additional requirements.

3.4 Results for ϕ3+ϕ4-theory

For the general zero-dimensional ϕ3+ϕ4-theory, the action
is given by

S(ϕ) =
1
2
µϕ2 +

1
6
λ3ϕ

3 +
1
24

λ4ϕ
4 . (38)

In the dimensionless variables

y =
x√
µ�

, g3 =
λ3

µ

√
�

µ
, g4 =

λ4�

µ2 ,

the SD equation becomes

1
6
g4R

′′′(y) +
1
2
g3R

′′(y) +R′(y)− yR(y) = 0 . (39)

To solve this equation, let

R(y) = e−yg3/g4F (y) .

Then F satisfies the equation

1
6
g4F

′′′(y) + αF ′(y)− (y + β)F (y) = 0 , (40)

where

α = 1− g2
3

2g4
, β =

g3

g4

(
1− g2

3

3g4

)
.

Finally, changing variables

y + β =
η√
α

, 4ξ =
g4

6α2 =
g4

6

(
1− g2

3

2g4

)−2

,

(40) becomes

4ξF ′′′(η) + F ′(η)− ηF (η) = 0 . (41)

(41) is exactly (30) of the pure ϕ4-theory, so that the
solutions here are those of (31) with ξ as given above and
y replaced by η.
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3.5 Results for the charged scalar field

For the complex scalar field, the path integral solution is
given by

R(x, x̄) =
∫

dϕdϕ̄ exp
{
1
�
[xϕ̄+ x̄ϕ− S(ϕ, ϕ̄)]

}
,

S(ϕ, ϕ̄) = µϕ̄ϕ+
λ

4
(ϕ̄ϕ)2 . (42)

Due to charge conservation (O(2)-symmetry) one can eas-
ily show that R only depends on the modulus xx̄, so that
it satisfies the following equation

ζR′′′(ζ) + 2R′′(ζ) + α2[R′(ζ)−R(ζ)] = 0 ,

ζ =
xx̄

µ�
, α = µ

(
2
g�

)1/2

. (43)

The third order equation can be solved by power series
expansion in ζ and two of its solutions are given by

R1(ζ) =
∞∑

n=0

1
i(n!)2

(
iζα√
2

)n

Hn

(
iα√
2

)
,

R2(ζ) =
∞∑

n=0

(ζα)n

n!
U(n+ 1

2 , α) , (44)

where Hn stands for the nth order Hermite polynomial and
U(ν, x) is the parabolic cylinder function. The third solu-
tion can be found by standard procedures but the actual
result is rather cumbersome and we refrain from giving it
explicitly.

WhereR1 is a purely non-perturbative solution,R2 has
an asymptotic series expansion which leads to the normal
perturbation series for the connected Green’s functions:
for instance the two point function is given by

C1,1 =
1
µ
− g�

µ3 +
5
2

g2
�

2

µ5 +O(g3
�

3) . (45)

Although the standard integral representation of R is
given by (42), the differential equation in the variable ζ
leads to another peculiar single contour integral represen-
tation

R(ζ) =
∫

Γ

dψ exp
(

ζψ − lnψ − α2

ψ
+

α2

2ψ2

)
,

where the contour Γ is from infinity to infinity such that
the integral is convergent.

3.6 Contours in the integral representation

The integral representation of the solutions for the pure
ϕ3-theory, with ψ =

√
µ/� ϕ, can be written as

R(y; ξ) = K

∫
Γ

dψ exp
(
−1
2
ψ2 − ξψ3 + yψ

)
, (46)

Γ0

Γ1

Γ2

Fig. 1. Contours in the complex u-plane for the Airy functions

where K is a constant which can depend on ξ. In case
the moduli of the endpoints of the contour Γ are taken
to infinity the standard path-integral representation is re-
covered. In fact in this case the substitution

u = (3ξ)−1/3ψ − 1
6ξ

leads to

R(y; ξ) = K exp
(
− 1
108ξ

− y

6ξ

)∫
Γ

du exp
(
−1
3
u3 + tu

)
.

This integral can now be expressed in terms of the Airy
functions∫

Γj

du exp
(
−1
3
u3 + tu

)
= 2πωjAi(tωj) ,

where ω = ei2π/3, j = 0, 1, 2 and the contours Γj are
depicted in Fig. 1. Note that∑

j

ωjAi(tωj) = 0 .

For a pure ϕ4-theory, similar considerations allow us to
express the functions Rj defined in (31), j = 1, 2, 3 as
follows

R1 =
1√
π
(2ξ)1/4 exp

(
− 1
32ξ

)∫ ∞

−∞
dψ

× exp
(
−1
2
ψ2 − ξψ4 + yψ

)

R2 =
−i

π3/2 (2ξ)
1/4 exp

(
− 1
32ξ

)∫ i∞

−i∞
dψ

× exp
(
−1
2
ψ2 − ξψ4 + yψ

)
(47)

whereas for R3(∫ ∞

0
+
∫ −i∞

0

)
dψ exp

(
−1
2
ψ2 − ξψ4 + yψ

)

=
√

π

2
(2ξ)−1/4 exp

(
1
32ξ

)
(R1 − iπR2)

+
iπ

2
exp

(
1
16ξ

)
(2ξ)−1/4R3 . (48)

Let us have a closer look at the various possible con-
tours in the case of general ϕ3+ϕ4-theory. Let us denote
the various objects in the action as complex numbers:

ϕ = |ϕ|eiω , λ3 = |λ3|eiη3 , λ4 = |λ4|eiη4 .
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Fig. 2. The regions in the complex ϕ-plane which correspond
with Ω4(k), Ω3(k) and Ω2(k) with ηj = −jαj

For simplicity and without loss of generality, we may keep
µ real and positive. The direction in the ϕ plane where
the term λ4ϕ

4 goes to positive infinity as |ϕ| → ∞ are
given by

ω ∈ Ω4(k) , Ω4(k) =
(
k
π

2
− π

8
− η4

4
, k

π

2
+

π

8
− η4

4

)
,

k = 0, 1, 2, 3 .

Similarly ‘allowed’ directions for the λ3ϕ
3 term are

ω ∈ Ω3(k) ,

Ω3(k) =
(

k
2π
3
− π

6
− η3

3
, k
2π
3
+

π

6
− η3

3

)
,

k = 0, 1, 2 .

Finally, the µϕ2 term goes to positive infinity for

ω ∈ Ω2(k) , Ω2(k) =
(
kπ − π

4
, kπ +

π

4

)
, k = 0, 1 .

By inspection of these endpoints, already statements can
be made about the (non)perturbative character of the the-
ory corresponding to a given contour. To illustrate this,
let us consider a pure ϕ4-theory, i.e. with λ3 = 0. Let the
contour start at some ϕ1, chosen at infinity with argument
ω1, and end at some ϕ2, also at infinity in some direction
with argument ω2. These values each have to be in some
interval Ω4: let ω1 be in Ω4(n1), and ω2 in Ω(n2). We
can sufficiently specify the contour by giving n1 and n2 so
that for instance the contour Γ20 for η4 = 0 denotes the
standard ϕ4-theory, where we may take the real line for Γ ,
start at ϕ = −∞ and end at ϕ = +∞ (interchange of the
endpoints corresponds to replacing R by −R and hence
does not influence φ(x)). In total, there are six contours
that give a viable ϕ4-theory: Γ01, Γ12, Γ23, Γ30, Γ02 and
Γ13. Note that these are related to each other by phase
shifts: in fact,

Γ30 = Γ12(η4 → η4 + 2π) , Γ23 = Γ12(η4 → η4 + 4π) ,

Γ12 = Γ12(η4 → η4 + 6π) , Γ13 = Γ02(η4 → η4 + 2π) .

Therefore, only Γ02 and Γ01, say, give really different the-
ories, all other cases being obtainable by an appropriate
shift in η4. All contours, as stated, corresponds to viable
theories as long as λ4 is non-vanishing, but when we let
|λ4| → 0 there are two possibilities. It may happen that
Ω4(n1) overlaps with one of the Ω2 segments, and Ω4(n2)
with the other Ω2 segment. In that case, the limiting the-
ory is equal to the free theory, and the limit |λ4| → 0
is smooth: we may call this the perturbative limit. In the

other case the limit is not smooth, and the path integral R
will diverge as |λ4| → 0: we call this the non-perturbative
limit. Clearly, the limiting behavior depends on the ar-
gument η4: for the contour Γ02 (the ‘standard one’) one
has

−3
2
π < η4 <

3
2
π ,

5
2
π < η4 <

11
2

π : perturbative ,

3
2
π < η4 <

5
2
π ,

11
2

π < η4 <
13
2

π : non-perturbative ,

and for the other contour Γ01:

1
2
π < η4 <

3
2
π ,

9
2
π < η4 <

11
2

π : perturbative ,

3
2
π < η4 <

9
2
π ,

11
2

π < η4 <
17
2

π : non-perturbative ,

For the pure ϕ3-theory, there are of course three contours,
related to each other: Γ20 = Γ01(η3 → η3 + 2π), Γ12 =
Γ01(η3 → η3 + 4π). For the limiting theory we find, for
contour Γ01:

−5
4
π < η3 <

1
4
π ,

7
4
π < η3 <

13
4

π : perturbative ,

1
4
π < η3 <

7
4
π ,

13
4

π < η3 <
19
4

π : non-perturbative .

In a theory with both ϕ3 and ϕ4 couplings, things become
more interesting. Of course, as long as λ4 is nonzero, we
are allowed to let λ3 go to zero without jeopardizing the
perturbativity. On the other hand, we can only let λ4 van-
ish with fixed λ3 if the selected Ω4 and Ω3 intervals over-
lap. We give in Fig. 3 and Fig. 4 the values of η4 and η3
that correspond to a perturbative λ4 → 0 limit, Finally,
we may study the combined limits λ4 → 0 followed by
λ3 → 0. The regions of perturbativity are given in Fig. 2.
Clearly, these are more restricted since we are in this case
requiring a common overlap of Ω2, Ω3 and Ω4.

4 Renormalization

Even though zero-dimensional field theories have no infini-
ties, we may still consider the effects of renormalization,
which here take a graph-theoretical significance. Renor-
malizing the field so that the exact propagator is 1/µ, and
the coupling constant so that the proper vertices assume
their tree-order form, we are counting Green’s functions
without self-energy and vertex insertions, that is, we are
counting the skeleton diagrams of the theory. We shall
restrict ourselves to theories that are known to be per-
turbatively renormalizable in the usual four-dimensional
case.

4.1 Renormalization of pure ϕ3-theory

In this case renormalization proceeds as usual with the in-
troduction of the tadpole (z1), the mass (z2) and the ver-
tex (z3) counter terms, as well as the corresponding renor-
malization conditions that imply the dependence of these
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Fig. 3. The shaded areas correspond to combinations of η4 and η3 (in units of π) for which the limit λ4 → 0 (with λ3 fixed) is
perturbative, for contour Γ01 (left plot) and contour Γ02 (right)
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Fig. 4. The shaded areas correspond to combinations of η4 and η3 (in units of π) for which the limit λ4 → 0 followed by λ3 → 0
is perturbative, for contour Γ01 (left) and Γ02

counter terms on the renormalized coupling constant. The
renormalized action can be written as (µ = 1, � = 1)

S =
1
2
z2ϕ

2 +
1
6
gz3ϕ

3 + z1ϕ , (49)

and the SD equation takes the form

z2φ = (x− z1)− G3

2
(φ2 + φ′) , G3 ≡ gz3 . (50)

Moreover using (19) we get,

3G3
∂φ

∂G3
= z2φ

′′ + 2z2φφ′ − φ− (x− z1)φ′ , (51)

whereas (6) becomes,

∂φ

∂z2
= −φφ′ − 1

2
φ′′ . (52)

The renormalization conditions that have to be applied
are

Condition 4.1.1. No tadpoles, i.e. φ(x = 0) = 0;

Condition 4.1.2. propagator = φ′(0) = 1;

Condition 4.1.3. vertex = φ′′(0) = −g.

Application of these conditions to the SD equation and its
derivative leads to the equations

z1 = −12gz3 , z2 = 1 +
1
2
g2z3 . (53)

So if we know z3 as function of g, we know z1 and z2 as
function of g, and we can consider φ to be a function of
g and x only. Its derivative w.r.t. g can, using ∂/∂z1 =
−∂/∂x, be written as

∂φ

∂g
= −φ′ż1 +

∂φ

∂z2
ż2 +

∂φ

∂G3
Ġ3 (54)

where a dot denotes differentiation w.r.t. g. Because φ is
a function of x and g only, the l.h.s. is zero in x = 0 by
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Condition 4.1.1, and evaluation of the r.h.s. leads to the
equation

g

2
dz3

dg
=
2z3 − 2(1 + g2)z2

3

−4 + (4 + g2)z3
. (55)

It is straightforward to derive that for g = 0 the pertur-
bative counter terms read

z1(0) = 0 , z2(0) = 1 , z3(0) = 1 .

(55) is an Abel equation of the second kind [7]. The per-
turbative solution, satisfying the above initial condition,
is

z3(g) = 1− g2 − 1
2
g4 − 4g6 − 29g8 − 545

2
g10 + · · · ,

(56)

an expansion previously given by Cvitanović et al. [4].
Having, however, solved the SD equation for ϕ3-theory

(Sect. 3.2), we also have an exact, albeit implicit, solution
of (55), making use of Condition 4.1.2:

[c1Ai′(t0) + c2Bi′(t0)]
(
2

gz3

)1/3

− z2

gz3
[c1Ai(t0) + c2Bi(t0)] = 0 , (57)

where

t0 =
(
2

gz3

)1/3(1
2
gz3 +

z2
2

2gz3

)

=
z2
2

(2g2z2
3)2/3

(
1 +

g2z2
3

z2
2

)
,

and Ai and Bi are the two independent solutions of the
Airy equation f ′′(t) = tf(t). The meaning of this equation
(57) is that for a given g and by using (53) as well as the
functional form of Ai and Bi we can determine z3. To show
that (57) is an implicit solution of (55), let

F (g) =
(2g2z2

3)
1/3

z2
,

implying t0F (g)2 − 1 = (gz3/z2)2, and differentiate (57)
with respect to g to get(

F ′(g)− dt0
dg

)
[c1Ai′(t0) + c2Bi′(t0)]

+F (g)[c1Ai′′(t0) + c2Bi′′(t0)]
dt0
dg

= 0 .

Using the Airy equation and (57), we get

F ′(g) +
dt0
dg
(t0F (g)2 − 1) = 0 .

Explicitly, this says

2z2
d(gz3)

dg
− 3gz3

dz2

dg
− 2z3

d(gz3)
dg

= 0 .
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Fig. 5. z3 as function of Re g with Im g = 0 for pure ϕ3-theory
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By using (53), one easily sees that the above equation is
an equivalent form of (55).

In Fig. 5 we present the results of a numerical calcula-
tion of z3 for the Γ10-contour as function of g, as described
in the Appendix. The left graph shows the real and imag-
inary part of z3 as function of real and positive values of
g. Notice that z3(0) = 1 as demanded, and that the imag-
inary part does not stay zero for real g. This is, of course,
an artifact of the definition of the path integral over a
complex contour, which is the Γ10-contour for ϕ3-theory
in this case (Fig. 2). The right graph combines the real
and imaginary part in one curve in the complex z3-plane.

Fig. 6 shows what happens if we let g run with real and
positive values of gz3, so that the actual coupling constant
is real and positive.

4.2 Renormalization of pure ϕ4-theory

In the case of ϕ4-theory, the renormalized action is given
by (µ = � = 1)

S =
1
2
z2ϕ

2 +
1
4!

gz4ϕ
4 . (58)

The SD equation becomes

z2φ = x− G4

6
(φ3 + 3φφ′ + φ′′) , G4 = gz4 , (59)

and the stepping equation (19), leads to

4G4
∂φ

∂G4
= z2φ

′′ + 2z2φφ′ − φ− xφ′ , (60)

whereas (6) assumes the form of (52). The renormalization
conditions require that
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Condition 4.2.1. φ(x = 0) = 0;

Condition 4.2.2. φ′(0) = 1;

Condition 4.2.3. φ′′′(0) = −g,

and application to the SD equation leads to the relation

z2 = 1− 16(3− g)gz4 . (61)

As in the case of ϕ3-theory, φ can be considered to be a
function of x and g only, and its derivative w.r.t. g can be
written as

∂φ

∂g
=

∂φ

∂z2
ż2 +

∂φ

∂G4
Ġ4 . (62)

The l.h.s. is zero in x = 0 by Condition 4.2.1, and evalu-
ation of the r.h.s. leads to

dz4

dg
=
−6z4 + (6− 9g + 3g2)z2

4

6g − g(6− 5g + g2)z4
, (63)

another Abel equation of the second kind. The perturba-
tive solution is given by

z4(g) = 1 +
3
2
g +

3
4
g2 +

11
8

g3 − 45
16

g4 +
499
32

g5 + · · · .

(64)

We want to remark at this point that the statement
by Cvitanović et al. that, in the case of ϕ3-theory, the
coefficients of the series expansion of g − gz3 count con-
nected three-point diagrams with no self-energy or ver-
tex insertions cannot be carried foreward to ϕ4-theory:
the coefficients of the series expansion of g − gz4 do not
count connected four-point diagrams with no self-energy
or (four-point) vertex insertions. There are, for example,
no such diagrams with three vertices.

To find the exact implicit solution of (63), we apply
Condition 4.2.2 to the solution (31) of ϕ4-theory, resulting
in

c1tU(1; t)
z2

− c2tV(1; t)
z2Γ ( 32 )

= c1U(0; t) +
c2V(0; t)

Γ ( 12 )
,

t =
(
3z2

2

gz4

)1/2

. (65)

Letting

F1(t) = c1U(1; t)− c2V(1; t)
Γ ( 32 )

and

F0(t) = c1U(0; t) +
c2V(0; t)

Γ ( 12 )
,

the above equation becomes

tF1(t) = z2F0(t) .

Using the properties of the parabolic functions we can
easily show that

F ′
1(t) =

(z2

2
− 1
)

F0(t) ,

0
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F ′
0(t) = −

1
2

(
t+

z2

t

)
F0(t) ,

so that differentiation of (4.2.3) leads to

dt

dg

z2

t
F0(t) + t

dt

dg

(z2

2
− 1
)

F0(t)

=
dz2

dg
F0(t)− z2

2
dt

dg

(
t+

z2

t

)
F0(t) .

This equation can be written as

d

dg

t

z2
+

dt

dg

(
1
2
+

t2

z2
2
· g − 3
6

gz4

)
= 0 ,

where we used relation (61). Finally, since t/z2 =
√
3/gz4

by definition of t, it is easily seen that the above equation
becomes (63).

In Fig. 7 we show the results of the numerical calcula-
tion of z4(g), as described in the Appendix. We used the
Γ20-contour for ϕ4-theory (Fig. 2). Starting at z4(0) = 1,
z4(g) stays real and positive for real and positive values of
g, as expected. Moreover z2 exhibits a zero, whose position
g� can be calculated analytically and is given by

g� = 3− 14

(
Γ
( 1

4

)
Γ
( 3

4

)
)2

∼ 0.81155 . (66)

At this point the theory becomes ‘massless’, in the sense
that the bare mass becomes zero, yet the Green’s functions
do not exhibit singular behavior. In fact let us consider
the 6-point function as an example. It can be explicitly
calculated and it reads

C6 = 6z−1
4 − 6 + 9g + g2 .
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Fig. 9. The complex g-plane and the complex z4-plane. g goes
around twice, anti-clockwise and starting on the real axis on
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It is easy to see that the expansion around g = 0 repro-
duces the known perturbative series. Moreover, the left
graph Fig. 8 presents C6 as a function of g.

We also see that z4 increases with increasing g, and ex-
plodes if g approaches 2. The graph on the right of Fig. 8
suggests that there is a simple pole at g = 2. In fact, sub-
stitution of a Laurent series around g = 2 in (63) results
in a solution with a simple pole:

z4(g) = − 6
g − 2 + 6− 12(g − 2) + 54(g − 2)

2

−399(g − 2)3 + 3948(g − 2)4 − · · · . (67)

One can ask the question whether this series expansion
corresponds to a solution with z4(0) = 1, that is, the per-
turbative solution. In order to get the perturbative solu-
tion from the implicit solution (65), in combination with
(61), we should take the constants c1 and c2 such that
the limit of t → ∞ exists. Using the properties of the
parabolic functions and their asymptotic expansions, we
find that the perturbative solution has to satisfy

z2 = t2

(
B3/4( 14 t

2)
B1/4( 14 t

2)
− 1
)

, (68)

Bν( 14 t
2) :=

{
1

cos νπ [I−ν( 14 t
2) + Iν( 14 t

2)] if Re t < 0
π

2 sin νπ [I−ν( 14 t
2)− Iν( 14 t

2)] if Re t > 0,

together with (61). For g close to, but smaller than, g = 2
we see that z2 < 0, so that Re t < 0, and it is easy to
see that the solution in this case has a simple pole at
g = 2. However, the coefficients for large powers in the
series expansion seem to behave as (2n + 2)!, so that the
series has radius of convergence equal to zero, and the
numerical solution of a curve around g = 2 in the complex
g-plane reveals that there is a branch point (Fig. 9). In
any case, for g → 2− the bare coupling becomes strong
and the bare mass squared large and negative whereas the
connected Green’s functions are still perfectly calculable;
for instance C6(g = 2) = 16.

4.3 Renormalization of ϕ3+ϕ4-theory

The renormalization of the ϕ3+ϕ4-theory is more involved,
but straightforward. The action is given by

S =
1
2
z2ϕ

2 +
1
3!

G3ϕ
3 +

1
4!

G4ϕ
4 + z1ϕ ,

G3 = g3z3 , G4 = g4z4 ,

and the SD equation assumes the form

z2φ = (x− z1)− G3

2
(φ2 + φ′)− G4

6
(φ3 + 3φφ′ + φ′′) .

(69)

The stepping equations read

∂φ

∂G3
= −1

6
φ′′′ − 1

2
φφ′′ − 1

2
φ

′2 − 1
2
φ2φ′

∂φ

∂G4
= − 1

24
φ′′′′ − 1

6
φφ′′ − 5

12
φ′φ′′ − 1

4
φ2φ′′

− 1
2
φφ

′2 − 1
6
φ3φ′

∂φ

∂z2
= −φφ′ − 1

2
φ′′ ,

and the renormalization conditions are now

Condition 4.3.1. φ(x = 0) = 0;

Condition 4.3.2. φ′(0) = 1;

Condition 4.3.3. φ′′(0) = −g3;

Condition 4.3.4. φ′′′(0) = 3g2
3 − g4.

Combining these conditions with the SD equation one eas-
ily gets

z1 =
1
2
g3G4 − 12G3 ,

z2 = 1− 16(3g
2
3 − g4 + 3)G4 +

1
2
g3G3 , (70)

so that φ becomes a function of g3, g4 and x only, leading
to the the four equations:

∂φ

∂gi

∣∣∣∣
x=0
≡ −φ′(0)

∂z1

∂gi
+

∂φ

∂z2

∣∣∣∣
x=0

∂z2

∂gi

+
∂φ

∂G3

∣∣∣∣
x=0

∂G3

∂gi
+

∂φ

∂G4

∣∣∣∣
x=0

∂G4

∂gi
= 0

and

∂φ′

∂gi

∣∣∣∣
x=0
≡ −φ′′(0)

∂z1

∂gi
+

∂φ′

∂z2

∣∣∣∣
x=0

∂z2

∂gi

+
∂φ′

∂G3

∣∣∣∣
x=0

∂G3

∂gi
+

∂φ′

∂G4

∣∣∣∣
x=0

∂G4

∂gi
= 0

with i = 3, 4. The coefficients at x = 0 can be inferred
form the stepping equations. This way we have a system
of four equations involving the partial derivatives of the
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functions G3(g3, g4) and G4(g3, g4) with respect to g3 and
g4. Notice that the equations are linear with respect to the
four partial derivatives but higly non-linear with respect
to the functions G3(g3, g4) and G4(g3, g4). They can be
solved perturbatively with the result

G3 = g3 − g3
3 �+

3
2

g3 g4 �+ 4 g5
3 �

2 − 6 g3
3 g4 �

2

+
3
4

g3 g2
4 �

2 − 4 g7
3 �

3 − 3
2

g5
3 g4 �

3 +
19
4

g3
3 g2

4 �
3

+
11
8

g3 g3
4 �

3 + 7 g9
3 �

4 − 93
2

g7
3 g4 �

4 + 81 g5
3 g2

4 �
4

−100
3

g3
3 g3

4 �
4 − 45

16
g3 g4

4 �
4 + 47 g11

3 �
5

−807
2

g9
3 g4 �

5 + 927 g7
3 g2

4 �
5 − 2787

4
g5
3 g3

4 �
5

+
1785
16

g3
3 g4

4 �
5 +

499
32

g3 g5
4 �

5

G4 = g4 + 3 g4
3 �− 6 g2

3 g4 �+
3
2

g2
4 �− 6 g6

3 �
2 + 5 g4

3 g4 �
2

+
3
2

g2
3 g2

4 �
2 +

3
4

g3
4 �

2 + 9 g8
3 �

3 − 43 g6
3 g4 �

3

+
151
2

g4
3 g2

4 �
3 − 39 g2

3 g3
4 �

3 +
11
8

g4
4 �

3 + 33 g10
3 �

4

−324 g8
3 g4 �

4 + 834 g6
3 g2

4 �
4 − 1485

2
g4
3 g3

4 �
4

+
1585
8

g2
3 g4

4 �
4 − 45

16
g5
4 �

4 +
1029
2

g12
3 �

5

−4610 g10
3 g4 �

5 +
27525
2

g8
3 g2

4 �
5 − 17020 g6

3 g3
4 �

5

+
68595
8

g4
3 g4

4 �
5 − 10705

8
g2
3 g5

4 �
5 +

499
32

g6
4 �

5

where the � dependence has been restored for convenience.
In the limit g3 → 0, also G3 → 0, and the equations

reduce to

∂G4

∂g3
= 0 ,

∂G4

∂g4
=

2(2− g4)G2
4

6g4 − (6− 5g4 + g2
4)G4

,

∂G3

∂g3
=

G4

g4
,

∂G3

∂g4
= 0 .

Note that G4(0, g4) can be identified as g4z4(g4) where z4
is the same function is as in pure ϕ4-theory. Another inter-
esting result is that the term linear in g3 in the expansion
of G3 is given by

G3(g3, g4) = g3z4(g4) +O(g2
3) .

4.4 Renormalization of the charged scalar field

In the case of the charged scalar field we consider the
integral representation

R(x, x̄) =
√

µ

�

∫
dϕdϕ̄ exp

{
−1

�
[µz2ϕϕ̄

+
1
4
λz4(ϕϕ̄)2 − xϕ̄− x̄ϕ

]}
,

which satisfies the SD equation

ζR′′′(ζ) + 2R′′(ζ) +
2

gz4
[z2R

′(ζ)−R(ζ)] = 0 ,

ζ =
xx̄

µ�
, g =

λ�

µ2 . (71)

In the dimensionless variables

u =
x√
µ�

, ū =
x̄√
µ�

, ζ = uū , ψ =
√

µ

�
ϕ ,

ψ̄ =
√

µ

�
ϕ̄ ,

(71) becomes

R(u, ū)=
∫

dψdψ̄ exp
(
−z2ψψ̄ − 1

4
gz4(ψψ̄)2 + uψ̄ + ūψ

)
,

implying

∂R

∂g
= −1

4
d(gz4)

dg

∂4R

∂u2∂ū2 −
dz2

dg

∂2R

∂u∂ū

or, in terms of the ζ-variable

∂R

∂g
= −1

4
d(gz4)

dg
(ζ2R′′′′ + 4ζR′′′ + 2R′′)

−dz2

dg
(ζR′′ +R′) . (72)

Now, the generating function of the connected Green’s
functions is given by

φ(x, x̄) = �
∂

∂x̄
lnR(ζ) =

x

µ

R′(ζ)
R(ζ)

,

and the renormalization conditions are

Condition 4.4.1.
∂φ

∂x
(x = x̄ = 0) =

1
µ
, implying R′(0)

= R(0);

Condition 4.4.2.
∂3φ

∂x̄∂x2 (x = x̄ = 0) = − λ

µ4 , implying

R′′(0) =
(
1− g

2

)
R(0).

By combining equations (71) and (72) and the renormal-
ization conditions we get

z2 = 1−
(
1− g

2

)
gz4

and

dz4

dg
=
2z4 − (3g2 − 5g + 2)z2

4

−2g + g(g2 − 3g + 2)z4
, (73)

with perturbative expansion

z4(g) = 1 +
5
2
g +

9
4
g2 +

49
8

g3 − 271
16

g4 +
5025
32

g5 + · · · .

(74)
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To get an exact implicit solution of (73), we go back to
(71) and change variables to get

ηR′′′(η) + 2R′′(η) + α2[R′(η)−R(η)] = 0 ,

η =
ζ

z2
, α =

√
2

gz4
z2 . (75)

This equation has exactly the form of (43), and the per-
turbative solution is given by

R(η) =
∞∑

n=0

(ηα)n

n!
U(n+ 1

2 ;α) .

Condition 4.4.1 implies the implicit exact solution of the
form

αU( 32 ;α) = z2U( 12 ;α) , (76)

where, of course, z2 = 1− (1− g/2)gz4.
To show that (76) is indeed an implicit solution of (73),

differentiate (76) with respect to g:

[U( 32 ;α) + αU′( 32 ;α)]
dα

dg
=

dz2

dg
U( 12 ;α) + z2U′( 12 ;α)

dα

dg
,

and using parabolic cylinder functions properties together
with (76) to get

dz2

dg
=
(

z2

α
+ αz2 +

z2
2

α
− α

)
dα

dg
, (77)

with α =
√

2
gz4

z2. It is a straight forward calculation to
show that this is indeed (73).

In the following we present a derivation of the initial
condition for z4(g = 0). Using the path integral expression
of (71), we find the SD equation

µz2�∂̄R+
λz4

2
�

3∂∂̄2R− xR = 0 .

The generating function φ = �∂̄ lnR of the connected di-
agrams satisfies

φ(0, 0) = 0 , (∂̄φ)(0, 0) = 0 ,

φ̄(0, 0) = 0 , (∂φ̄)(0, 0) = 0 .

as well as the SD equation

φ =
x

µz2
− λz4

2µz2
(φ̄φ2 + 2�φ∂φ+ φ̄∂̄φ+ �

2∂̄∂φ) ,

with the renormalization conditions 4.4.1 and 4.4.2. These
should hold for any value of �, and for � = 0, the SD
equation becomes

φ0 =
x

µz2(0)
− λz4(0)
2µz2(0)

φ̄0φ
2
0 ,

from which we derive for the perturbative solution that

(∂φ0)(0, 0) =
1

µz2(0)
⇒ z2(0) = 1 ,

(∂̄∂2φ0)(0, 0) = −λz4(0)
µ4 ⇒ z4(0) = 1 .

Notice that the value � = 0 is directly related to g = 0
since g is proportional to �.

5 Summary

In this paper we studied several aspects of zero-
dimensional field theories. In the first place we derived a
set of diagrammatic equations, including the well known
Schwinger-Dyson equations as well as a set of ‘stepping’
equations generalizing some previous results. Then we
showed how to solve these equations exactly in terms of
known functions and we established integral representa-
tions of these solutions, best known as the ‘path integral’
representation. Explicit results were obtained for ϕ3, ϕ4,
ϕ3+ϕ4 and the charged scalar field theories. Subsequently,
we studied the ‘renormalization’ of such theories in zero
dimensions, which is equivalent to counting diagrams with
restrictions imposed on the type of diagrams considered,
for instance diagrams without any tadpoles, self-energy in-
sertions or vertex insertions. We were able to get explicit
results for the dependence of the bare quantities such as
the mass, the coupling, and the tadpole counter terms, on
the renormalized (physical) coupling constant. Examples
of interesting observations are the facts that in ϕ4 the-
ory, the bare mass exhibits a zero at a finite value of the
renormalized coupling constant g = g� ((66)), whereas at
g → 2− ε the bare coupling becomes strong and the mass
squared becomes large and negative. Yet in both cases
the ‘physical’ connected Green’s functions remain finite
and calculable.

Appendix

Consider general ϕp-theory, and suppose that all but one
renormalization conditions have been implemented
through functions zk(g, zp), k = 1, 2, .., p − 1 of two vari-
ables zp and g, like in (53) and (61). This means that we
are considering a theory with an action

S(g, zp;ϕ) =
gzp

p!
ϕp +

p−1∑
k=1

zk(g, zp)
k!

ϕk .

Let Γ be a contour in the complex ϕ-plane, such that
Reϕp →∞ at the endpoints, and define

Zn(g, zp) :=
∫

Γ

dϕϕn exp{−S(g, zp;ϕ)} .

Such an integral is not defined for all complex values of
gzp. Let gzp = |gzp|eipη and denote by e−iηΓ the contour
that is obtained from Γ by clockwise rotation over η. For
complex values of gzp, we define

Zn(g, zp) :=
∫

e−iηΓ

dϕϕn exp{−S(g, zp;ϕ)}

= e−i(n+1)η
∫

Γ

dϕϕn

× exp
(
−|gzp|

p!
ϕp −

p−1∑
k=1

zk

k!
e−ikηϕk

)
.
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Integrals of this type can easily be calculated to high pre-
cision by numerical integration. One just has to choose Γ
such that it goes through one or more saddle points, so
that the integrand oscillates as little as possible.

To formulate the renormalization problem further, let
us denote the connected moments by Cn, so

C1 =
Z1

Z0
, C2 =

Z2

Z0
− C2

1 ,

C3 =
Z3

Z0
− 3C2C1 − C3

1 , . . .

and so on. The problem is to solve zp as function of g from
the implicit function equation

Cp(g, zp) = −g ,

which represents the final renormalization condition. This
equation can be solved numerically. Given a value of g, we
have to find the zero of the function

F (zp) := Cp(g, zp) + g ,

which can be found using Newton-Raphson iteration

zp ← zp − F (zp)
F ′(zp)

.

By making small steps in the value of g, the solution zp(g)
on a curve in the complex g-plane can be determined. At
the start of each iteration, the question arises of which

initial value of zp to choose, and the obvious answer is
to choose the final value of the previous iteration, which
should lie close the the new final value if the steps in g are
not to large.

As a check one can look whether the results obtained
with this method satisfy (numerically) the available dif-
ferential equations for zp(g) ((55) and (63)).
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